Automated segmentation of molecular subunits in electron cryomicroscopy density maps.

نویسندگان

  • Matthew L Baker
  • Zeyun Yu
  • Wah Chiu
  • Chandrajit Bajaj
چکیده

Electron cryomicroscopy (cryoEM) is capable of imaging large macromolecular machines composed of multiple components. However, it is currently only possible to achieve moderate resolution at which it may be possible to computationally extract the individual components in the machine. In this work, we present application details of an automated method for detecting and segmenting the components of a large machine in an experimentally determined density map. This method is applicable to object with and without symmetry and takes advantage of global and local symmetry axes if present. We have applied this segmentation algorithm to several cryoEM data sets already deposited in EMDB with various complexities, symmetries and resolutions and validated the results using manually segmented density and available structures of the components in the PDB. As such, automated segmentation could become a useful tool for the analysis of the ever-increasing number of structures of macromolecular machines derived from cryoEM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions.

Cryo-electron microscopy produces 3D density maps of molecular machines, which consist of various molecular components such as proteins and RNA. Segmentation of individual components in such maps is a challenging task, and is mostly accomplished interactively. We present an approach based on the immersive watershed method and grouping of the resulting regions using progressively smoothed maps. ...

متن کامل

Electron cryomicroscopy of biological machines at subnanometer resolution.

Advances in electron cryomicroscopy (cryo-EM) have made possible the structural determination of large biological machines in the resolution range of 6-9 angstroms. Rice dwarf virus and the acrosomal bundle represent two distinct types of machines amenable to cryo-EM investigations at subnanometer resolutions. However, calculating the density map is only the first step, and much analysis remain...

متن کامل

Refinement of protein structures into low-resolution density maps using rosetta.

We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using bot...

متن کامل

Visualization of Icosahedral Virus Structures from Reconstructed Volumetric Maps

In this paper we present an automatic algorithm to segment the asymmetric subunits of an icosahedral density map. This approach is readily applicable to the structural analysis of a broad range of macromolecular structures that are reconstructed using the cryo-electron microscopy (cryoEM) technique. Our algorithm includes three major steps: the detection of critical points, the detection of ico...

متن کامل

Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM.

Mitochondrial ATP synthase is responsible for the synthesis of ATP, a universal energy currency in cells. Whereas X-ray crystallography has revealed the structure of the soluble region of the complex and the membrane-intrinsic c-subunits, little is known about the structure of the six other proteins (a, b, f, A6L, e, and g) that comprise the membrane-bound region of the complex in animal mitoch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of structural biology

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 2006